
Practical
Electronics
& Programming

with Arduino
Session 2: Communicate

Review Last Class
● Check homework projects

Session 2 Overview
● Hello Serial
● Custom outputs
● Simple Inputs
● Parsing Inputs

What is Serial?

● How Arduino communicates with computer
● Old protocol implemented virtually on USB
● Two lines - Receive and Transmit (relative to device)
● Data sent in discrete chunks, usually 8 bits at a time

Things to know
● Baud rate - speed of transmit/receive
● Need same baud rate on both devices,

otherwise gibberish
● Common baud rates:

110, 150, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200,
230400, 460800, 921600

● Defacto standard settings (95%+ the time):
9600 baud date 8 data bits, no parity, one stop bit (9600/8-N-1)

Things to know (Cont.)
As baud rate goes up:
● Faster data transfer
● More data transfer
● More processing power used
● Less reliable

Serial on Arduino
Serial Monitor:

Serial TX /RX lights:

First Example
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

int count = 0;
void loop() {
 Serial.println(count); //print a character with a newline
 delay(500); //wait 0.5 seconds (500 milliseconds)
 count = count + 1; //increment count
}

Should output increasing numbers
forever, one every 0.5 seconds

First Example

While Loop
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

int count = 0;
void loop() {
 while(true)
 {
 Serial.println(count); //print a character with a newline
 delay(500); //wait 0.5 seconds (500 milliseconds)
 count = count + 1; //increment count
 }
}

<-- loops forever, because the 'condition' is always true

Should output increasing numbers
till 9, one every 0.5 seconds, then
loop back and repeat

First Example

While Loop
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

int count = 0;
void loop() {
 while(count < 10)
 {
 Serial.println(count); //print a character with a newline
 delay(500); //wait 0.5 seconds (500 milliseconds)
 count = count + 1; //increment count
 }
}

<-- only counts up to 9, because then the count < 10 condition is false

While Loop

Should output increasing numbers
till 9, one every 0.5 seconds, then
stop

While Loop
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

void loop() {
 int count = 0;
 while(count < 10)
 {
 Serial.println(count); //print a character with a newline
 delay(500); //wait 0.5 seconds (500 milliseconds)
 count = count + 1; //increment count
 }
}

<-- now resets to zero after reaching 10

While Loop

Should output increasing numbers
till 9, one every 0.5 seconds,
repeat

For Loop
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

void loop() { //loop repeats infinitely
 for(int count=0; count < 10; count++)
 {
 Serial.println(count); //print a character with a newline
 delay(500); //wait 0.5 seconds (500 milliseconds)
 }
}

While Loop

Should output increasing numbers
till 9, one every 0.5 seconds,
repeat

Variable Types
There are different types of 'variables', ways computers store data:

Data Type Size in bytes
(1 byte = 8 bits, or 1/0's)

Max/Min value
(signed)

Max value (unsigned)

char 1 byte (8 bits) -128 ... 127 0 ... 255

byte 1 byte (8 bits) -128 ... 127 0 ... 255

short 2 bytes (16 bits) -32,768 ... 32,767 0 ... 65,535

int 4 bytes (32 bits) 2,147,483,648 ... 2,147,483,647 0 ... 4,294,967,295

long 8 bytes (64 bits) -4.61x108
 ... 4.61x108 0 ... 9.22x108

float 4 bytes (32 bits) -3.4x1038 ... 3.4x1038 N/A

double 8 bytes (64 bits) -4.9x10324 ... 4.9x10324 N/A

Variable Tradeoffs
More bits:
● Slower
● More data
● More precision for

floating
● More likely to

overflow

Less bits:
● Faster
● Less data
● Less precision for

floating
● Less likely to

overflow
Use what size you have to, no more. But ONLY AFTER IT WORKS, and ONLY IF YOU
NEED TO.

"Premature optimization is the root of all evil in programming."
- Donald Knuth, Computer Science Legend

Overflow
● Variables have 'max values', they can only

store numbers so large.
● Go over this value, and they go back to their

lowest value, THIS MESSES UP CODE
BAD.

Example: should have used an int (32 bits) instead of a short (16 bits)!

Overflow Example
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

byte count = 0; //only using 8 bits to store data (max of 255)
void loop() {

while(count < 300) //should stop at 300, but won't because it will overflow
 //at 255 back to zero

{
 Serial.println(count); //print a character with a newline
 delay(20); //wait 0.02 seconds (20 milliseconds)
 count = count + 1; //increment count
}

}

Overflow Example

Overflows, and so will loop
forever. It never falses on the
< 300 condition to tell the while
loop to stop.

Different Outputs
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

int count = 0;

void loop() {
 Serial.println(count); //print a character with a newline
 delay(500); //wait 0.5 seconds (500 milliseconds)
 count = count + 1; //increment count
}

What are Characters
Characters are simply another way to think of
bytes, mapping the number to the ASCII table:

Decimal Number Character

Input->Output Example
void setup() {
 Serial.begin(9600); //Initialize serial and wait for port to open
}

char incoming; //Create a temporary storage character (1 byte)
void loop() {

if(Serial.available() != 0){ //If there is incoming Serial Data
{
incoming = Serial.read(); //Read a char from the serial line
Serial.print(incoming); //Print it back
}

}

Input->Output Example
1 - Type stuff here

2 - Send it to the Arduino

3 - Arduino sends it back

Character Parsing

Integer Parsing

